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The population balance equation �PBE� for growth by attachment of a monomeric unit is described in the
discrete domain by an infinite set of differential equations. Transforming the discrete problem into the con-
tinuous domain produces a series expansion which is usually truncated past the first term. We study the effect
of this truncation and we show that by including the second-order term one obtains a Fokker-Planck approxi-
mation of the continuous PBE whose first and second moments are exact. We use this truncation to study the
asymptotic behavior of the variance of the size distribution with growth rate that is a power-law function of the
particle mass with exponent a. We obtain analytic expressions for the variance and show that its asymptotic
behavior is different in the regimes a�1/2 and a�1/2. These conclusions are corroborated by Monte Carlo
simulations.
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I. INTRODUCTION

In crystallization, polymerization, and particle synthesis
in general, control of the size distribution is a consideration
of great practical interest. Tightest control of polydispersity
is achieved in seeded growth, namely, when nucleation and
coagulation are suppressed and particles grow through the
deposition of precipitating species �“monomer”�. There are
several factors that contribute to the widening of the size
distribution even under conditions of seeded growth. Most
significantly, the growth rate is generally a function of size,
causing different modes of the size distribution to grow at
different rates. Nevertheless, even among particles of the
same size and in the same reaction environment, it is often
observed that a distribution of growth rates exists �1,2�. This
source of polydispersity has been called growth dispersion, a
term used to collectively refer to various mechanisms that
can give rise to such behavior, for example, presence of gra-
dients in the reaction medium arising from inefficient mix-
ing, fluctuations due to turbulence, or the existence of an
intrinsic distribution of growth rates �e.g., variability of
growth sites among particles� �2,3�. Growth dispersion is
manifested most clearly when the precipitation medium is
seeded with a monodisperse population of particles. In the
presence of dispersion, the spread of the size distribution
increases with time leading to a polydisperse system.

The classical approach to modeling the size distribution in
growth �precipitation� by the monomer attachment is based
on the population balance equation written in the form �2�

�f�x;t�
�t

= −
�K�x�f�x;t�

�x
, �1�

where f is the size distribution, x is the chosen size coordi-
nate, and K�x� is the growth rate for size x. Equation �1� is
not capable of producing dispersion: if the distribution is
initially monodisperse, it will continue to remain so indefi-
nitely. This limitation has been addressed in the literature
by adding a diffusive term whose strength is usually fitted to

experiments �2�. In conjunction with fragmentation, diffusive
growth has been used to model dynamic instabilities in
microtubule polymerization �4�, and explain size distribu-
tions observed in as diverse systems as crystals in ice sheets
and length distributions of � helices in proteins �5�. More
recently, Olesen et al. �6� incorporated size diffusion into the
fragmentation/coagulation equation and obtained analytic
solutions. In most of these studies, the diffusive term is in-
troduced ad hoc and represents an artificial correction to
the PBE with a diffusion coefficient that is treated as an
adjustable parameter.

As it has been pointed out in previous works �7–9�, a
diffusive term emerges naturally when the discreteness of
the growth process is taken into consideration. The attaching
monomer, although often small compared to the particle to
which it attaches, is nevertheless a discrete unit. From this
viewpoint, Eq. �1� represents an approximation to the rigor-
ous population balance equation �PBE� that is valid in the
limit that such discreteness may be ignored. If this limit is
not quite reached, Eq. �1� must be corrected with terms that
include the second-order and higher derivatives of the size
distribution with respect to size. The connection between dis-
persion and discreteness of the attaching unit can be under-
stood by viewing the growth process in stochastic terms. In a
population of particles competing for the same pool of
monomers, growth occurs in discrete steps in size and time.
At each step, the particle that captures a monomer, thereby
increasing its mass by one unit, represents a fluctuation. Such
fluctuations grow in time in a diffusive manner and are fur-
ther amplified if growth favors larger sizes over the smaller
ones, as is usually the case. The size distribution that
emerges from this process is determined by the coupling be-
tween fluctuations and the growth law. The effect of disper-
sion and its relationship to the growth mechanism is a ques-
tion that has to be addressed when measured size
distributions are used to deduce the growth mechanism �1,7�.
More generally, the accuracy and limitations of Eq. �1� arise
in the broader context of designing crystallizers and devel-
oping their optimization and control schemes �10–13�. A
small number of studies has focused directly on the broad-
ening that arises by including higher-order terms in the PBE.
McCoy �8� and Madras and McCoy �12� wrote the continu-*Electronic address: matsoukas@psu.edu
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ous PBE in a form that explicitly accounts for the discrete-
ness of the depositing unit and applied this formulation to
crystal precipitation in the presence of nucleation and disso-
lution but did not address directly the effects of dispersion.
More recently, Haseltine et al. �9� in a numerical study of
nucleation and growth in crystallizers showed that Eq. �1�
with the diffusive term included leads to good agreement
with the results from discrete stochastic simulation. Matsou-
kas and Gulari �7� used a combination of moment analysis
and simulations to obtain a scaling between the variance and
the mean size in the absence of nucleation. While that study
provided a useful connection between the growth law and the
observed polydispersity, the question of how size fluctuations
propagate in time remains unresolved.

The purpose of this paper is to quantify size fluctuations
in growth by monomer attachment and to assess the correc-
tions to Eq. �1� that are necessary to capture this broadening.
The paper is organized as follows: We begin in Sec. II by
writing the exact population balance in discrete form and
obtain analytical solutions in two special cases, size indepen-
dent growth, and growth that is proportional to the particle
mass. In Sec. III we derive the continuous population
balance in the form of an infinite series, study the effect of
truncation to a finite number of terms, and obtain analytic
solutions with truncation that retains the diffusive term in
the presence of power-law growth rates. In Sec. IV we
present a systematic study by numerical simulation of the
effect of the growth law on the size distribution and discuss
the implications of our results.

II. DISCRETE POPULATION BALANCE

We consider particle growth by addition of a monomeric
unit according to the reaction

Ai + A1 ——→
Ki

Ai+1, �2�

where A1 represents the precipitating species �“monomer”�,
Ai is a particle of size i in units of the monomeric mass, and
Ki is the rate constant of the reaction. To isolate the effect of
dispersion we consider growth of an initial population of
seed particles in the absence of further nucleation. Such
seeds may be assumed to either form by a brief homoge-
neous nucleation burst, or could be introduced externally in
the form of nucleation seeds.

The discrete population balance equation corresponding
to Eq. �2� is

dci

dt�
= Ki−1c1ci−1 − Kic1ci, �3�

where c1 is the concentration �1/m−3� of monomeric units, ci

is the concentration �1/m−3� of particles of mass i �in units of
the monomer�, and Ki is the rate constant �m3/s� for the
reaction between monomer and particle of size i, assumed to
be a function of the particle size. The rate constant can be
expressed in the form

Ki = K0ki, �4�

where K0 is the dimensional part �m3/s� and ki is the dimen-
sionless growth rate normalized such that k1=1. We are

interested in growth rates of the power-law form

ki = ia. �5�

In addition to mathematical convenience, this form encom-
passes a number of cases of practical interest. In diffusion-
limited attachment of a solute onto a particle, the particle
growth rate is Ki=4�RiD1, where Ri is the particle radius, D1
is the diffusion coefficient of the solute, and n1 is its concen-
tration �14�. For spherical particles, Ri�mi

1/3, i.e., a=1/3.
For reaction-limited growth and for ballistic growth in the
kinetic regime, the growth rate is proportional to the surface
area, thus the growth law is again of the power-law type with
a=2/3 �14�. With a=0 we obtain size-independent growth
while with a=1 the growth rate is proportional to the particle
mass. Values of a outside the interval �0, 1� do not represent
physical systems and are not considered here.

We define the dimensionless concentration, ni, and time, t,
as

ni =
ci

C0
, t = K0C0�

0

t�
c1dt�, �6�

where C0 is the total particle concentration initially. With
these definitions, the population balance becomes

dni

dt
= ki−1ni−1 − kini. �7�

In the transformed time t, the population balance is indepen-
dent of the concentration of the monomer. If the amount of
monomer is finite, then t approaches a finite value. If the
initial supply of monomer is large, or if the monomer is
continuously added to the reactor, the transformed time can
be made arbitrarily large. The moment of order k is defined
as

xk = �
i

ikni, �8�

and its evolution is obtained in the usual manner by multi-
plying the PBE by ik and performing the summation over i.
The result for integer k is

dxk

dt
= �

m=0

k−1 � k

m
	xa+m. �9�

In the two special cases a=0 and a=1, Eq. �9� is a closed set
and permits an explicit solution for the moments. These two
cases are discussed in more detail below.

A. Size independent growth „a=0…

With a=0, the solution can be obtained by solving se-
quentially Eq. �7� of the discrete population balance. With
arbitrary initial conditions �ni�0�=ni,0� this solution is

ni = e−t�
k=0

i−1
ni−k,0

k!
tk. �10�

The mean size, x1, and variance, �x
2=x2−x1

2, are obtained
from Eq. �9� with a=0. Integrating with initial conditions
x1,0, �x,0

2 we find
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x1 = t + x1,0 � t , �11�

�x
2 = t + �x,0

2 � t . �12�

At long times the distribution in Eq. �10� becomes a Gauss-
ian function whose mean and variance, according to Eqs.
�11� and �12� both increase as �t. Accordingly, the normal-
ized variance �x

2 /x1
2 scales as �1/x1. While the absolute

width of the distribution increases, the ratio �x
2 /x1

2 decreases.
Such behavior has been called self-sharpening to emphasize
the narrowing of polydispersity during growth.

B. Proportional growth law „a=1…

The proportional growth law, a=1, also leads to a closed
system of equations for the moments. With arbitrary initial
conditions the first few moments of the size distribution are

x1�t� = etx1,0, �13�

x2�t� = − etx1,0 + e2t�x1,0 + x2,0� , �14�

x3�t� = etx1,0 − 3e2t�x1,0 + x2,0� + e3t�2x1,0 + 3x2,0 + x3,0� .

�15�

For the normalized variance, �x
2 /x1

2, we then obtain

�x
2

x1
2 =

�x,0
2

x1,0
2 +

1

x1,0
−

1

x1
, �16�

where �x,0
2 , x1,0, are the variance and mean size at t=0. The

size distribution at long times depends on the initial condi-
tions. For monodisperse initial conditions with xk,0=1 �i.e.,
all seeds have the same size as the depositing unit�, the mo-
ment of order k is dominated by the leading term, i.e., xk
�k!x1

k, which we recognize as the k-order moment of the
exponential distribution:

ni �
exp�− i/x1�

x1
, �17�

with x1=et. Dispersion in this case transforms a monodis-
perse distribution at t=0 into an exponential distribution with
�x

2 /x1
2
1. This represents a substantial broadening of the

distribution and shows that growth by monomer attachment
can lead to distributions as wide as those produced by co-
agulation �coagulation with size-independent rate also results
in the exponential distribution of Eq. �17� �14��.

III. THE CONTINUOUS POPULATION BALANCE

In practice it is far more convenient to work with a con-
tinuous representation of the distribution. In the continuous
size domain x, the distribution is f�x� such that f�x�dx is the
concentration of particles in the mass range �x ,x+dx�, and x
is the particle mass normalized by the size of the attaching
unit. The governing equation of f is obtained from the dis-
crete population balance equation using Taylor series to ex-
press the finite difference in Eq. �7�. Noting that the particle
mass x is normalized by the size of the monomer, the result-
ing equation is a power series in �x=−1:

�f

�t
= �x − 1�af�x − 1� − xaf�x� = �

m=1

�
�− 1�m

m!

�mxaf

�xm . �18�

The moments of the continuous distribution are defined by

xk =� xkf�x�dx , �19�

and their evolution is obtained by propagating this definition
through Eq. �18�. The derivation is given in the Appendix
and the final result for integer k is

dxk

dt
= �

m=1

k � k

m
	xk+a−m. �20�

It can be verified that Eqs. �20� and �9� produce identical
results. Therefore the continuous population balance ex-
pressed by the infinite series in Eq. �18� is equivalent to the
discrete equation in Eq. �7�.

A. Fokker-Planck truncation and its moments

The usual form of the PBE is a truncation of the full PBE
in which only the convective term is retained. If the second-
order term is retained, we obtain a diffusive contribution that
introduces dispersive character in the PBE. In general, we
can produce a truncation with J terms. To determine the de-
gree of approximation that is introduced when the infinite
series is truncated to a finite number of terms, we retain the
first J terms in the right-hand side of Eq. �18� and recalculate
the moments based on the truncated PBE. This is done easily
once we notice that each term of order m of the series in Eq.
�18� gives rise to a term that contains xk+a−m, as in Eq. �20�.
Then, if the PBE is truncated past the Jth term, the corre-
sponding integer moments are governed by the truncated
series

dxk

dt
= �

m=1

J � k

m
	xk+a−m = �

m=1

max�k,J� � k

m
	xk+a−m. �21�

The replacement of J by max�k ,J� in the upper limit of the
summation is made possible by the fact that the binomial
coefficient is zero when J�k. Through direct comparison we
recognize Eq. �21� for the moments of the truncated PBE as
a truncation of Eq. �20� to J terms. For the moment of order
k, the rigorous Eq. �20� produces a summation with k terms;
the truncated Eq. �21� produces a summation that has at most
J terms. Therefore all integer moments of order 0	k	J of
the truncated PBE are in exact agreement with those of the
complete PBE while moments of higher order are only ap-
proximate. It follows that the truncation that retains only the
convective term reproduces the correct evolution of the mean
size but not that of the variance. This explains the inability of
Eq. �1� to account for dispersion.

To track the variance, it is sufficient to include the second-
order term. This produces an equation of the Fokker-Planck
type with a convective and a diffusive term:
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�f

�t
= −

�xaf

�x
+

1

2

�2xaf

�x2 . �22�

The convective term represents the mean growth rate and the
diffusive term introduces size fluctuations with diffusion
coefficient D=xa /2. The moments corresponding to this
truncation are obtained from Eq. �21� with J=2:

dxk

dt
= kxk+a−1 +

k�k − 1�
2

xk+a−2. �23�

It is easy to verify that the moments of order 0, 1, and 2, and
these only, are identical to those of the full PBE. From here
on we will adopt the two-term truncation and we will inves-
tigate the effect of dispersion for growth exponents in the
“natural” range 0	a	1.

B. The PBE in other coordinates

In Eq. �22�, both the convective and the diffusive term
are functions of size. A simpler equation can be written
by removing the size dependence of the convective term.
To do this we write the population balance in a new size
coordinate, z, defined as �see also Appendix Sec. 3�

z =
x1−a

1 − a
�a � 1� . �24�

�In the special case a=1 the corresponding transformation is
z=ln�x� but since the solution to a=1 is known, this case is
of no further interest. Hence we assume a�1 and use Eq.
�24� throughout of the rest of the paper.� The size distribu-
tion, g�z�, in the transformed coordinate z, is governed by the
following differential equation �see Appendix Sec. 3�:

�g

�t
= −

�g

�z
+

1

2

�

�z
�1

k

�g

�z
	 . �25�

Here, k=k�z� is the growth law expressed in terms of the size
coordinate z, namely

k�z� = � z

1 + 

	


�26�

with


 =
a

1 − a
. �27�

We note that the growth law remains a power-law function in
the transformed size z and that the corresponding growth
exponent is 
, with 0	
��. The PBE in the size variable
z consists of a convective term, whose coefficient is indepen-
dent of size, and of a diffusion term with diffusivity 1/k. As
explained in the Appendix, the condition that removes the
size dependence of the convective term is k�dz /dx�=1, from
which Eq. �24� follows.

The moments zk of order k in z are obtained in the usual
manner and, as shown in the Appendix, the general result is

dzk

dt
= kzk−1 +

k�k − 1�
2

�1 + 
�
zk−
−2. �28�

With k=1 we confirm that the first moment is linear in time,
as expected from the fact that the convective term in Eq. �25�
is independent of z. The evolution of the variance, �z

2=z2
−z1

2, follows by application of Eq. �28� and by straightfor-
ward manipulation we find

d�z
2

dz1
= �1 + 
�
z−
. �29�

This equation is coupled to the moment of order −
 but the
closure problem can be resolved if the distribution is narrow.
In this case, an approximate expression for z−
 is �see
Appendix Sec. 5�

z−
 
 z1
−

1 +


�1 + 
�
2

�z
2

z1
2 � , �30�

and Eq. �29� becomes

d�z
2

dz1
= �1 + 


z1
	

1 +


�1 + 
�
2

�z
2

z1
2 � , �31�

which is now in closed form.

C. Behavior at long times

The solution to Eq. �31� can be expressed analytically in
terms of the exponential integral function, as shown in Ap-
pendix Sec. 5. However, the behavior of the variance can be
analyzed more easily if a further simplification is made. If
�z

2 /z1
2 decreases in time, the variance may be dropped from

the right-hand side of Eq. �31� to obtain a simpler equation:

d�z
2

dz1

 �1 + 


z1
	


. �32�

This is readily integrated from z1,0, �z,0
2 , to obtain

�z
2 = �z,0

2 +
�1 + 
�


1 − 

�z1−
 − z1,0

1−
� . �33�

Depending on the value of the growth exponent we distin-
guish two cases: For 
�1 �or a�1/2�, the variance at long
times is

�z
2 �

�1 + 
�


1 − 

z1−
, �34�

i.e., it grows as a power-law function of z1 with exponent
1−
. For 
�1 �or a�1/2�, on the other hand, the variance
at long times reaches a constant value, given by

�z,�
2 = �z,0

2 +
�
 + 1�



 − 1
z1,0

−�
−1�. �35�

In the borderline case 
=1 �or a=1/2�, Eq. �32� integrates to

�z
2 = �z,0

2 + 2 ln
z

z1,0
, �36�

i.e., in this case the variance increases logarithmically in z1.
The results can be summarized as follows:
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�z
2 ��z1

1−
 = z1
�1−2a�/�1−a� �0 	 a � 1/2� ,

z1
0 �1/2 � a 	 1� .

� �37�

For growth exponents larger than 1/2, the variance at long
times becomes constant, implying that the distribution is
translated along the z axis without any changes in its shape.
This behavior can also be inferred from Eq. �25� by noting
that the diffusive term is proportional to the inverse of the
growth rate; accordingly, for large growth exponents, k is a
rapidly increasing function of z, rendering the diffusion term
negligible. Under such conditions, the PBE is dominated by
the convective term thus leading to the condition �z

2=const.
For growth exponents with weak dependence on size �a
�1/2� the variance increases as a power-law function of z
whose exponent is a function of a. In all cases, the ratio
�z

2 /z1
2 decreases, thus the assumption that the distribution is

narrow holds true and the approximation that led to Eq. �31�
is appropriate.

The scaling behavior of z obtained above can be ex-
pressed in terms of the original size variable x �particle
mass�. First we note that according to Eq. �37�, the normal-
ized variance �z

2 /z1
2 is a decreasing function of time, i.e., the

distribution in z is self-sharpening and becomes a delta func-
tion in the limit z1→�. For narrow distributions we can
write the following relationships between the moments in x
and in z �see also Appendix Sec. 1�:

x1 
 �z1�1 − a��1/�1−a�, �38�

�x
2

x1
2 


1

�1 − a�2

�z
2

z1
2 . �39�

Combining with Eq. �37� we arrive at scaling relationships
for the mass, x:

�x
2

x1
2 ��x1

−1, 0 	 a � 1/2,

x1
−2�1−a�, 1/2 � a 	 1.

� �40�

In the discrete treatment with a=0 we found that the distri-
bution at long times is a Gaussian function with �x

2 /x1
2

�1/x1. Here we find that the variance obeys the same scal-
ing in the entire range 0	1�1/2. This result prompts us to
examine whether the Gaussian character of the distribution
also persists in this range of growth exponents. Indeed, it
does. Since distributions are narrow, k�z�
k�z1�, and Eq.
�25� becomes

�g

�t

 −

�g

�z
+

1

2k�z1�
�

�z
� �g

�z
	 . �41�

Noting that dz1=dt from Eq. �28�, the above result is analo-
gous to the diffusion equation with time-dependent diffusiv-
ity. Its solution is a Gaussian function with mean z1 and
variance

�z
2 = �

z1,0

z dz1

k�z1�
� z1

1−
. �42�

This result is in agreement with Eq. �33�. Thus we conclude
that in the range 0	a�1/2, the distribution at long-time
goes over to a Gaussian function independently of the initial

conditions. The distribution in x is also approximately
Gaussian, since both f�x� and g�z� become sharply peaked
functions.

IV. RESULTS AND DISCUSSION

To compare our results to the complete solution of the
population balance equation we have conducted Monte Carlo
simulations with growth exponents in the range 0 to 1. The
algorithm used has been described in detail elsewhere �15�
and is briefly outlined here. A population of N particles is
followed during growth in the presence of a concentration of
monomer. At each step, a particle is selected and its mass is
incremented by 1 if the following condition is met:

RND 	 � Mi

Mmax
	a

, �43�

where RND is a random number from a uniform distribution
in the range 0 to 1, Mi is the mass of the selected particle,
and Mmax is the maximum mass in the population. The pro-
cess is then repeated until the desired final size has been
reached. This algorithm simulates growth under an unlimited
supply of monomer. Since the mean size x1 serves as the
growth coordinate, it is not necessary to account for time
explicitly, though this may be done, as discussed in Ref. �15�.
The simulations are conducted with N=105 simulation par-
ticles using monodisperse initial conditions with x1,0=1 �i.e.,
the initial particle size is equal to the size of the monomer�.

We begin by first examining the behavior of the analytic
solution for the variance in z. Figure 1 shows a plot of �z

2

against the mean size z1 for values of the growth exponent in
the range 0 to 1. This variance is computed from the analytic
solution of Eq. �31�, given by Eq. �A26� in the Appendix.
The behavior predicted by theory is clearly observed: for
growth exponents in the interval 0	a�1/2, the variance
increases in power-law form while for 1 /2�a	1 it reaches
a steady-state value. The special case a=1/2 gives rise to a
slow logarithmic increase.

FIG. 1. Variance of transformed size z as a function of the mean
based on the solution of Eq. �31�.
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The normalized variance �x
2 /x1

2 is shown in Fig. 2. Lines
are from the theoretical solution, obtained from the approxi-
mate solution, Eq. �31�, in combination with Eqs. �38� and
�39�, and are compared with results obtained by Monte Carlo
simulation. The scaling predicted by theory is seen clearly.
For all growth exponents in the range 0	a�1/2, the nor-
malized variance decays as 1/x1. For 1 /2�a�1, the decay
is slower until, for a=1, the normalized polydispersity be-
comes constant. The analytic results are in excellent agree-
ment with the Monte Carlo results in the region a�1/2 and
note that for a=0 the difference between simulations and
theory is less than 0.1%. Deviations are observed as a is
increased above 1/2 and at a=1 we find that the analytic
result overestimates the variance by about 25%. These devia-
tions are due to the approximations involved in the analytic
result. Specifically, the derivation of Eq. �31�, which pro-
vides the theoretical calculation for this graph, assumes the
distribution to be narrow. This assumption is certainly very
good for small a but less accurate near a=1, where the mass
distribution is in fact exponential. On the other hand, Eq.
�16�, which is the exact solution for a=1, is in agreement
with Monte Carlo but this comparison is not shown to avoid
clutter.

The size distributions obtained by MC simulation are
shown in Fig. 3. We recall that for growth exponents below
1/2 the distribution is predicted to be Gaussian with variance
that is proportional to the mean size x1. Accordingly, by plot-
ting the distributions in the normalized size coordinate, y,
defined

y = 2�x1/2 − x1
1/2� , �44�

size distributions obtained at different times must all collapse
onto a single shape that has Gaussian form. This is indeed
observed in Fig. 3. The Gaussian fits, shown by solid lines,
are in very good agreement with the data. At the critical

value a=1/2, the distribution does not reach a stationary
state, as demonstrated by the imperfect collapse of the data.
Still, the Gaussian form seems to provide a good description
of the size distribution.

For growth exponents larger than 1/2, the size transfor-
mation that collapses all distributions is given by the trans-
formed size z, translated to zero mean:

y = �z − z1�/�1 − a� 
 �x1−a − x1
1−a�/�1 − a� . �45�

With increasing a, the distribution attains a pronounced tail
in small sizes and a sharper front above the mean. In the
special case a=1 the transformed size coordinate is z=ln x
and the corresponding distribution in x is exponential. To
demonstrate the latter point, the distribution for a=1 is also
shown in the semilog coordinates. We note that the apparent
narrowing of the size distribution in the range a=1/2 to 1 is
an artifact of the transformed coordinate in the abscissa. In
terms of the particle mass, x, distributions become wider as
the growth exponent increases.

The scaling behavior that emerges from the above results
establishes a=1/2 as the characteristic growth exponent that
separates two distinct regimes. This distinction was noted
earlier in Matsoukas and Gulari �7� who used the terms weak
�a�1/2� and strong kernels �a�1/2� to refer to the two
regimes. This distinction is formalized here on the basis of
the Fokker-Planck truncation of the population balance equa-
tion. This truncation, which retains the diffusive term, cor-
rectly accounts for the effects of dispersion that is intrinsic to

FIG. 2. Normalized variance �x
2 /x1

2 vs average mass with initial
size x1,0=1. Solid lines are calculated from the solution of Eq. �31�;
points are from Monte Carlo simulation with 105 particles and
monodisperse initial conditions with x1,0=0. The dashed lines are
drawn with slope −1.

FIG. 3. Distributions by Monte Carlo simulation with monodis-
perse initial conditions and x1,0=1. Symbols represent distributions
obtained for different times during growth. The size coordinate is
defined so as to collapse all data at long times onto a single distri-
bution that depends only on the growth exponent a.
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the growth process. This dispersion can be thought to arise
from two sources. The first source is due to statistical fluc-
tuations which grow in time and give rise to Gaussian dis-
persion. These fluctuations are further amplified by the
growth law. For growth exponents a�1/2 this amplification
does not interfere with the Gaussian nature of the dispersion.
On the other hand, growth with strong size dependence, i.e.,
a�1/2, is dominated by the convective part of the PBE and
leads to size distributions that are not universal but depend
on the initial conditions. We refer to this type of broadening
as “convective” dispersion because it arises from the differ-
ent rates at which the low and high ends of the distribution
grow. After a transient broadening that depends on the initial
seed population the variance in z remains constant. This
amounts to dropping the diffusive term from the PBE—
although such simplification leaves us without the means to
quantify this variance. We note that the size coordinate z was
introduced in a semiquantitative way by Overbeek �16� who
observed that the growth rate of the moment x1−a is indepen-
dent of size. Overbeek thus concluded that the distribution of
z merely translates along the size axis from which it follows
that the variance must be constant. This conclusion, which is
based on the convective term of the PBE alone, is indeed
correct if a�1/2, but not if a�1/2.

A further difference between the two growth regimes is
with respect to the effect of the initial conditions. With weak
growth exponents �a�1/2� the memory of the initial state is
lost and the scaling form of the variance is independent of
the initial conditions. With strong growth exponents the vari-
ance at long times is a function on the initial state and, as
shown in Eq. �35�, it depends on both the variance and mean
size at time zero. This behavior is demonstrated in Fig. 4 in
which we plot the normalized variance as a function of time
for monodisperse initial conditions and initial size ranging
from 1 to 100. In our normalization this refers to the size of
the seeds relative to the size of the attaching unit. For a=0

the effect of seed size is transient and all lines at long times
collapse onto the predicted scaling form. With a=1, the nor-
malized variance decreases as the seed size is increased. The
borderline case a=1/2 leads to long-time behavior such that
the normalized polydispersity is logarithmically spaced in
x1,0. Therefore with strong growth exponents, the steady-
state polydispersity has an inverse relationship to the initial
seed size. Maximum dispersion is obtained when the size of
the seeds is equal to the size of the depositing unit, leading to
the distributions shown in Fig. 3. In fact, dispersion is pre-
dicted to increase even further when x0,1�1, however, we
are not aware of any physical system in which the seed
particles are smaller than the attaching unit.

V. CONCLUSIONS

Our analysis has elucidated the relationship between the
rigorous �discrete� population balance equation and the vari-
ous truncations of its continuous representation. We have
shown that the Fokker-Planck truncation tracks the variance
exactly and have provided analytic solutions for the variance
for power-law growth rates with exponents in the range 0 to
1. Although the simple PBE that consists of the convective
term alone is incapable of tracking the spread of the distri-
bution, this failing is not always a serious limitation in prac-
tice. For growth exponents in the natural range 0	a	1, the
evolution of the distribution is self-sharpening, indicating
that in the long run dispersion can be ignored. This is even
more so when the population balance equation includes co-
agulation or other processes that result in substantial broad-
ening of the distribution, masking the more subtle effects of
diffusive dispersion. Dropping the diffusive term in such
case, as commonly done in the aerosol literature, is generally
acceptable �17–19�. On the other hand, the simple PBE fails
to properly account the evolution of narrow distributions of
small seeds, especially if growth does not advance substan-
tially beyond the size of the monomer. Thus, in modeling the
synthesis of nanoparticles, or the assembly of building
blocks into small clusters, the simple PBE is inadequate and
the diffusive term needs to be incorporated.
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APPENDIX: DERIVATIONS

1. Relationships between moments in the narrow-distribution
approximation

Consider the random variable z and its probability density
function, g�x�. We define the deviation variable �=z−z1

where z1 is the first moment of x. Obviously, var���=�z
2. To

obtain an expansion for the k-order moment we first write

�z1 + ��k = z1
k
1 +

�

z1
+

k�k − 1�
2

� �

z1
	2

+ ¯ � . �A1�

Upon integration over the distribution of � we obtain

FIG. 4. Effect of initial size on polydispersity. Initial conditions
are monodisperse with x1,0=1 ,10,100.
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zk = z1
k
1 +

k�k − 1�
2

�z
2

z1
2 + ¯ � . �A2�

Consider now the transformation

x = Czn. �A3�

We wish to obtain a relationship between the variance in z
and the variance in x. First we note an exact relationship
between the moments of z and those of x:

xk = Ckznk, �A4�

from which

x1 = Czn = Cz1
n
1 +

n�n − 1�
2

�z
2

z1
2 + ¯ � , �A5�

x2 = C2z2n = C2z1
2n
1 + n�2n − 1�

�z
2

z1
2 + ¯ � . �A6�

Combining these and expressing the results as a series
expansion in �z

2 /z1
2 around �z

2 /z1
2=0 we find

�x
2

x1
2 = n2��z

2

z1
2 	
1 − O��z

2

z1
2 	2� . �A7�

For narrow distributions, therefore

�z
2

z1
2 = n2�x

2

x1
2 . �A8�

For the transformation defined in Eq. �24�, C= �1−a�1/�1−a�

and n=1/ �1−a�, and Eq. �A8� gives

�x
2

x1
2 = �1 − a�2�z

2

z1
2 . �A9�

The relationship is valid provided that the distribution in z is
narrow.

2. Moments in x

In this section we derive the moments of the full PBE in
Eq. �18�. We begin by deriving the following general result
for any k, a �not necessarily integer�:

�
0

�

xk�xaf�x�
�x

dx = �xk+af�x��0
� − �

0

�

kxk−1+af�x�dx = kxk+a−1,

�A10�

where we have assumed that f�x� at x=0 and x→� goes to
zero faster than any power of x. Using the above result,
integration of the second derivative yields

� xk�2xaf�x�
�x2 dx = k�k − 1�xk+a−2. �A11�

It can be seen now that in the term of order m, the result is

� xk�mxaf�x�
�xm dx = �− 1�mk�k − 1� ¯ �k − m + 1�xk+a−m

= �− 1�m ��k + 1�
��k − m + 1�

xk+a−m, �A12�

which leads to Eq. �20� of the text.

3. Derivation of the PBE in other size coordinates

For the arbitrary size transformation, z=z�x�, the
corresponding size distribution is

g�x;t� = f�x;t�
dx

dz
. �A13�

We use the above equation to express the derivatives of
f�x ; t� in terms of g�x ; t� and its derivatives, and substitute
the result into Eq. �22�. This results in the following equation
for g:

�g

�t
= −

�

�z
�k

dz

dx
g	 +

1

2

�

�z

 dz

dx

�

�z
�gk

dz

dx
	� . �A14�

The coefficient of the convective term can be made constant
if we choose z such that

k
dz

dx
= 1. �A15�

Using Eq. �A15�, Eq. �A14� simplifies to

�g

�t
= −

�g

�z
+

1

2

�

�z
� dz

dx

�g

�z
	 , �A16�

and by further of Eq. �A15�, to

�g

�t
= −

�g

�z
+

1

2

�

�z
�1

k

�g

�z
	 , �A17�

which is Eq. �25� of the text. The transformation that
removes the size dependence of the convective term is given
by Eq. �A15�. For the power-law kernel in particular,
integration leads to

z = �x1−a/�1 − a� − c if a � 1,

ln x − c if a = 1,
� �A18�

where c is an integration constant. With c=0 we obtain Eq.
�24� of the text.

We note that the procedure to transform the Fokker-
Planck equation into a form with constant convective term
via Eq. �A15� is possible for any functional form of the
growth law, not only the power-law form adopted here.

4. Moments in z

The moments of the z coordinate are obtained in analo-
gous manner from Eq. �25� by multiplying by zk followed by
integration over z. Using Eq. �26� for k, the result is

dzk

dt
= −� zk�g

�z
dz +

�1 + 
�


2
� zk �

�z
z−
�g

�z
dz , �A19�

where
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 =
a

1 − a
. �A20�

The integrals in Eq. �A19� are obtained from Eq. �A12� with
m=1, a=0, and m=2, a=−
, respectively, leading to the
general result,

dzk

dt
= kzk−1 +

k�k − 1�
2

�1 + 
�
zk−
−2. �A21�

With k=0,1, and 2 we obtain

dz0

dt
= 0, �A22�

dz1

dt
= 1, �A23�

dz2

dt
= 2z1 + �1 + 
�
z−
. �A24�

Applying these results to the variance, �z
2=z2−z1

2, and using
dt=dz1, we find

d�z
2

dz1
= �1 + 
�
z−
. �A25�

With a=0 �i.e., 
=0, z=x� we obtain d�z
2 /dz1=1 and thus

we retrieve the scaling obtained from the solution of the
discrete PBE.

5. Solution for �z
2

To resolve the closure problem in Eq. �A25� we express
z−
 using Eq. �A2� with k=−
. This leads to Eq. �30� of the
text and finally to Eq. �31� for the variance. Using
MATHEMATICA �Wolfram Research, version 5.2� the solution
of Eq. �31� for monodisperse initial conditions and initial
size z1,0 is

�z
2 =

2z1,0
2 eC�z−
−1−z1,0

−
−1�


�
 + 1�
−

2z2


�
 + 1�
+

4eCz−
−1
�z2E�
+3�/�
+1��Cz−
−1� − E�
+3�/�
+1��Cz1,0

−
−1�z1,0
2 �


�
 + 1�2 , �A26�

where

C = −
1

2

�1 + 
�
, �A27�

and En�z� is the exponential integral, defined as

En�z� = �
1

� e−zt

tn dt . �A28�

This equation was used to obtain Fig. 1.
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